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Abstract
In early work, Lawes and March obtained a differential equation for an arbitrary
number of independent harmonically confined fermions in one dimension, and
very recently this result has been generalized to apply to three-dimensional (3D)
isotropic harmonic confinement. Here, an exact solution of this 3D equation
for the fermion particle density ρ(r) is constructed, and the near-diagonal form
of the Dirac density matrix is also obtained.

PACS numbers: 31.15Ew, 02.10.Yn, 02.30.-f

A long-term aim of density functional theory is to construct a differential equation for
the particle density ρ of N fermions, for arbitrary N , without recourse to Schrödinger
wavefunctions. For the admittedly very limited case of independent fermions, harmonically
confined and restricted to one-dimensional motion, Lawes and March [1] in early work gave
such a differential equation, namely

ρ ′′′(x)
8

+

(
N − x2

2

)
ρ ′(x) +

1

2

∂V

∂x
ρ(x) = 0 (1)

the lowest state corresponding to N = 1, with the potential energy given by V (x) = (1/2)x2.
Impetus for further theoretical study of harmonically confined fermions has come from the
recent experimental work of Demarco and Jin [2]. This has motivated the study of Minguzzi
et al [3], who have very recently generalized equation (1) to three dimensions, for isotropic
harmonically confined fermions filling an arbitrary number M + 1 of closed shells. Their
differential equation reads

1

8

∂

∂r
[∇2ρ(r)] + [(M + 2)ω − V (r)]ρ ′(r) +

3

2

∂V

∂r
ρ(r) = 0 (2)
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where the isotropic harmonic potential is now written as

V (r) = 1
2ω

2r2. (3)

This equation is here shown to have a relatively simple solution for ρ(r) of the form

ρ(r) = C exp(−ωr2)

M∑
n=0

a(n)(ωr2)n. (4)

In equation (4), the normalization constant C is given by

C =
[√

π

2

(ω
π

)3/2
N

] / M∑
n=0

a(n)�(n + 3/2). (5)

Here, N is the total fermion number for (M + 1) filled shells, which is readily obtained from
the degeneracy of the three-dimensional (3D) oscillator levels as

N = (M + 1)(M + 2)(M + 3)/6. (6)

Finally, in equation (5) the coefficients a(n), which depend on the number of closed shells
considered, are related by the recursion relation

0 = a(n + 2)

[
(n + 2)(2n + 5)

2

]
+ a(n + 1)[2(M + 1) − 3(n + 1)] + a(n)

[
2(n − M)

(n + 1)

]
(7)

with

a(M) = 2M.

After noting at this point that these results have been confirmed by explicit calculation
for the first few values of M , we sketch the derivation of equations (4)–(7). From the known
form of the 3D harmonic-oscillator wavefunctions [4], it is obvious that the total density must
have a factor exp(−ωr2). If it is assumed that the full solution for the density can be written
in the form of the product of this factor and a finite series in powers of r , it is found by simple
substitution in equation (2) that equation (4) is a valid solution provided the (M + 1) terms in
the series have coefficients related by the recursion relation of equation (7).

We want to add some comments here as to the near-diagonal generalization of equation (4)
to treat the Dirac [5] density matrix γ (r, r0), which is such that

γ (r, r0)|r0=r = ρ(r). (8)

The density matrix γ satisfies the equation of motion [6]

∇2
rγ − ∇2

r0
γ = 2m

h̄

[
1

2
ω2(r2 − r2

0 )

]
γ (r, r0). (9)

However, it is important at this point to stress that the canonical density matrix for the 3D
oscillator, C(r, r0, β), also satisfies equation (9). In terms of wavefunctions ψi(r) and
corresponding eigenvalues εi

C(r, r0, β) =
∑
alli

exp(−βεi)ψ
∗
i (r)ψi(r0). (10)

Sondheimer and Wilson [7] showed for the isotropic 3D harmonic oscillator that

C(r, r0, β, ω) =
[

ω

2π sinh(βω)

]3/2

exp

[
−ω|r + r0|2

4
tanh

(
βω

2

)]

× exp

[
−ω|r − r0|2

4
coth

(
βω

2

)]
. (11)
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Figure 1. The (positive definite) kinetic energy density tG(r) compared with the von Weizsäcker
tW (r) for M = 9, for ω = 0.01 and 0.1 au.

The inverse Laplace transform L−1 of C/β with respect to β yields L−1[C/β] → γ (r, r0, E).
This establishes, by using equation (11), that γ depends only on two space variables |r + r0|
and |r − r0|. This is a huge simplification over the general central field case for closed shells,
when γ depends on |r|, |r0| and the angle between the two vectors. One is led then to write,
by expansion around the diagonal,

γ (r, r0) = ρ

( |r + r0|
2

, ω

)
+ f

( |r + r0|
2

)
|r − r0|2 + O(|r − r0|4). (12)

The first term is known from equation (4), while

f (r) = − tG(r)

3
+

∇2ρ

24
(13)

where tG(r) is defined from the wavefunction form 1
2

∑
i (∇ψ)2 (see [8]). However, we already

know that [3]

t ′(r)
ρ ′(r)

= (M + 2)h̄ω − 1

2
ω2r2 (14)

and

tG(r) = t (r) + 1
4∇2ρ(r). (15)

Thus we have also determined the near-diagonal behaviour of the Dirac density matrix from a
knowledge of ρ(r) plus the potential V (r).

The averaged kinetic energy density t(r) = [tG(r) + t (r)]/2 can be determined explicitly
from equations (4)–(7) as

t(r) =
M∑
n=0

τn(r) + λ (16)
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with

τn(r) = −3

8

Nω5/2

π(n + 1)

(ωr2)n/2∑M
n=0 a(n)�(n + 3/2)

exp(−ωr2/2)a(n)M
(
n

2
,
(n + 1)

2
, ωr2

)
(17)

and M(κ, µ, z) the Whittaker M-function with parameters (κ, µ) [9]. Here the constant λ on
the right-hand side of equation (16) can be evaluated as

λ = 3

8

Nω5/2

π

∑M
n=0 a(n)�(n + 1)∑M

n=0 a(n)�(n + 3/2)
. (18)

The final point we wish to make is the expectation that the (positive definite) kinetic energy
tG(r) will eventually, outside the classical radius, tend to the von Weizsäcker kinetic energy
density tW (r) defined by

tW (r) = 1

8

ρ ′2(r)
ρ(r)

(19)

at sufficiently large r . In figure 1 we show tG(r) and tW (r) for M = 9 (i.e. for ten filled shells)
and for the cases ω = 0.1 and 0.01 au. Especially in the lower part of the figure it is plain that
tG(r) approaches tW (r) as one exceeds the classical radius.

In summary, equation (4) constitutes an exact solution, for (M + 1) closed shells, of the
differential equation (2) of [3]. This has then been employed, together with equations (13)
and (14), to determine the near-diagonal behaviour of the Dirac density matrix γ (r, r0) through
equation (12). Finally, the positive definite kinetic energy density tG(r) has been shown to
approach the von Weizsäcker form (16) in the tunnelling region outside the classical radius of
the oscillator potential.
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